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Software engineers spend more than half of their productive time
on program comprehension tasks, such as reading documentation

or trying to understand a colleague’s code. Comments enable

programmers to understand code more rapidly, prevent them from
duplicating existing functionality, and aid them in fixing (or

preventing) bugs. Unfortunately, many codebases suffer from a lack
of thorough documentation. In order to ameliorate this problem, we

propose a novel technique for language-agnostic, automatic
summarization of source code.

Prior methods for generating natural language summaries of
source code involved leveraging intermediate representations,

template-based approaches, and information retrieval techniques.

Recently, authors have applied deep-learning models reminiscent
of those used to translate between two natural languages. Two

recent papers define the state-of-the-art for source code
summarization:

• Iyer et al., 2016 (CODE-NN) – Code is tokenized and fed into
CODE-NN, an LSTM-based neural network with attention.

• Hu et al., 2018 (DeepCom) – Code is converted into abstract
syntax trees. A novel traversal method is applied to generate

sequences, which are used as input to an LSTM-based
encoder/decoder model.

Both works take a language-specific approach and use “closed”
vocabularies (i.e., all words that can be predicted are known in

advance).

We evaluate our model using two primary data sources:
1. Hu et al., 2018 – Previous authors collected a large parallel

corpus of Java methods and comments from 9,714 GitHub projects.

2. Multilanguage Corpus – We created a database of unique 

code/comment pairs from a large number of open-source projects.

def fib(n): 
if n <= 1:       

return n   
else:       

return(fib(n-1) +
fib(n-2))

“Recursively find n-th

Fibonacci number”

Language Examples

Java 558,108

Language Examples

C++ 910,169

Java 12,314,470

Python 1,166,922

Hu et al., 2018 – We use the train / validate / test splits provided
by the authors.

Multilanguage Corpus – We use the first sentence in the

description of a piece of source code as the comment. We exclude
code/comment pairs that do not appear to be informative, based on

either their content or their length.
We hold out 50,000 examples from each language as a test set.

The remaining examples are split 80%-20% into training and
validation sets. During training and validation, batches contains only

one language, where languages are chosen with equal probability.

The characters from 
a given code snippet are 

converted to real-valued 

vectors using a 
character embedding.

Stacked 
convolutional filters learn 

different-length features 

from the code.

Summary statistics 
are derived from 

convolutional filter 

outputs.

1

2

3

4 Using a dense layer, 
we obtain the model's 

internal representation of 

the code.

Language
Our Results

(BLEU)

Words per 

Comment

Comment 

Entropy (Bits)

C++ 40.86 11.22 103.57

Java 42.34 10.62 97.35

Python 26.53 24.36 224.78

Language
Our Results

(BLEU)

Hu et al. 

(BLEU)

Words per 

Comment

Comment 

Entropy (Bits)

Java 38.63 38.17 11.61 104.92

We use the bilingual evaluation understudy (BLEU) score to
compare our predicted summaries to true source code comments.

We use BLEU-4, meaning the BLEU score includes 4-grams and

below. Consistent with Hu et al., we do not use smoothing to
resolve the lack of higher order n-gram overlap. Mathematically,

We present BLEU scores and examples for each data source.
1. Hu et al., 2018

We present a novel encoder/decoder model capable of
summarizing arbitrary source code. We demonstrate results

comparable to the state-of-the-art for a single-language (Java),

while avoiding the cumbersome parsing required by previous
models. We also present the first results on a corpus containing

multiple programming languages and provide the first baselines for
summarization of C++ and Python code.

Possible extensions of this work include:
• Summarization at the class, document, or project level

• Incorporation of a “copying” mechanism, to enable direct

references to proper names (e.g., variable and class names)
• Comparison to a closed-vocabulary model with the same

encoder, on the basis of compute time and accuracy
There are a number of opportunities to integrate automatic source

code summarization into the software development lifecycle, such
as incorporating it into IDEs and version control systems.

Our LSTM decoder translates the “thought vector” from the encoder
into natural language. The initial hidden state is set equal to the thought

vector. At the first time step, the LSTM receives a “START” token as

input. For subsequent time steps, during training (a) we use “teacher
forcing,” in which the LSTM receives the true prior word as input; during

testing (b), we instead provide the LSTM with the predicted prior word.

Unlike previous machine translation models, our model can predict
any word by leveraging a vocabulary consisting of word, subwords, and

single characters. At each time step, the model predicts one element

from the vocabulary. Sequential predictions can be combined to form a
single word, using special <BEGIN SPELL> and <END SPELL> tokens.

To create the model's vocabulary, we generate a set of all comments
in the training data. We then split compound words (e.g.,

"IndexException" and "guiFrame") into their components, and split words

into their roots and suffixes. The final vocabulary is made up of the most
common word components, as well as all letters and punctuation marks.

!"#$ = ! ∗ '∑)*+, -) ∗ ./0(2))
! = 41 if 8 > :

'(;<=/?) if 8 ≤ :
where pn is the proportion of n-grams in the prediction that are in the
true comment, wn is the weight associated with those n-grams, c is

the length of the prediction, and r is the length of the true comment.

2. Multilanguage Corpus

Actual Comment Predicted Comment

serialize an object to an 
outputstream.

writes the given objects to the 
output stream.

warning log prints a message at verbose priority.

Actual Comment Predicted Comment

return the real table name of the 
object.

return the name of the object.

receive a message from the IO 
components in the channel stack

called when a message is received.

a function to unload the config 
object.

the config file.

a

b
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